FINAL REPORT

Crude MCHM

HAEL No.: 97-0216 EAN: 972790

PM No.: 18717-00 CAS: Not Available

CHEMICAL OXYGEN DEMAND DETERMINATION

AUTHOR

M. Steinbugler

TEST GUIDELINE

"Environmental Laboratory Certification Manual", New York State Department of Health, January 1987.

"OECD Principles of Good Laboratory Practice", [C(81)30(Final)], Annex 2.

TESTING FACILITY

Environmental Analytical Services
Chemicals Quality Services Division
Manufacturing Quality Assurance Organization
Eastman Kodak Company
Rochester, New York 14652-6276
USA

STUDY SPONSOR

Eastman Chemical Company

Report No. COD-00775

STUDY COMPLETION DATE

October 2, 1997

ANALYTICAL QUALITY ASSURANCE INSPECTION STATEMENT (CFR 58.35(B)(7) 792.35(B)(7) 160.35(B)(7))

STUDY: 97-0216 STUDY DIRECTOR: BISHOPP, M.

ANALYTICAL DIRECTOR:

KAN: 972790 CQS JOB NUMBER:

STUDY TYPE: CHEMICAL OXYGEN DEMAND

THE FOLLOWING PHASES OF THIS STUDY WERE INSPECTED BY ONE OR MORE PERSONS OF THE QUALITY ASSURANCE UNIT ON THE DATES LISTED BELOW. WRITTEN STATUS REPORTS WERE SUBMITTED TO THE STUDY DIRECTOR AND APPROPRIATE MANAGEMENT.

INSPECT DATES	REQUEST NUMBER	PHASE (S) INSPECTED	STATUS REPOR DATES
08/06/97		PROTOCOL SUBMISSION ECHEM	08/06/97
10/01/97		TEST REPORT INSPECTION ECHEM	10/01/97

GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

This study was conducted according to:

United States Food and Drug Administration, Good Laboratory Practice for Nonclinical Laboratory Studies, 21 CFR Part 58;

United States Environmental Protection Agency, Toxic Substances Control Act, Good Laboratory Practice Standards, 40 CFR Part 792;

Annex 2, Organization for Economic Cooperation and Development, Guidelines for the Testing of Chemicals [C(81)30(Final)].

Mary Lee Bishopp Study Director

October 9, 1997 Month/Day/Year Karen R. Miller

Eastman Contact Representative

SIGNATURE PAGE

M. Steinlergec	September 30, 1997
Mary Steinbugler	Month/Day/Year
Report Author	
Mary Lee Bishopp	October 2, 1997 Month/Day/Year
Mary Lee Bishopp Study Director	World Day, I car
2,	
Youn R. mieler	October 9, 1997
Karen R. Miller	Month/Day/Year
Eastman Contact Representative	

TABLE OF CONTENTS

		Page
ABSTRACT		6
STUDY AND	TEST SUBSTANCE INFORMATION	
	Testing Facility	7
	Sponsor	7
	Sponsor Representative	7
	Study Dates	7
	Project Participants	7
	Test Substance Characterization	7
	Test Substance Storage	8
PURPOSE		8
MATERIALS AND METHODS		8
	Calculations	8
	Protocol And Standard Operating Procedure Deviations	8
	Data Storage And Record Retention	8
RESULTS		9
CALCULAT	TONS	9
DISCUSSIO	N	10
CONCLUSION		10
REFERENC	ES	10
FIGURES	I COD Worksheet	11

Crude MCHM

HAEL No.: 97-0216 EAN: 972790

PM No.: 18717-00 CAS: Not Available

ABSTRACT

The chemical oxygen demand (COD) of the test substance was measured in compliance with "OECD Principles of Good Laboratory Practice, [C(81) 30(Final)], Annex 2. The method of measurement is identical to Method C.6., "Degradation, Chemical Oxygen Demand", Official Journal of the European Communities, No. L383A / 227,29 December 1992. The mean of two measurements was found to be 2.54 grams of COD per gram of the test substance. The BOD5/COD ratio was found to be 0.028.

STUDY AND TEST SUBSTANCE INFORMATION

Testing Facility

Environmental Analytical Services Chemicals Quality Services Division Eastman Kodak Company Rochester, New York 14652-6276 USA

Sponsor

Eastman Chemical Company P.O. Box 431 Kingsport, Tennessee 37662-5280 U.S.A.

Sponsor Representative

Karen Miller P.O. Box 431 Kingsport, Tennessee 37662-5280 U.S.A.

Study Dates

Study Start Date: August 6, 1997 Experimental Start Date: August 7, 1997 Experimental Completion Date: August 8, 1997

Project Participants

Study Director Mary Lee Bishopp
Principal Investigator Tammy Kleiber
Report Author Mary Steinbugler

Test Substance Characterization

Name: Crude MCHM

EAN: 972790

HAEL No.: 97-0216 PM#: 18717-00 CAS: Not Available

Test Substance Storage

The test substance was stored at room temperature in a locked cabinet before and after each analysis was performed.

PURPOSE

The purpose of this study was to determine the oxidizability of the test substance under standard conditions of the oxidizing agent, temperature, and time.

MATERIALS AND METHODS

The test was performed in duplicate and 0.500 N potassium dichromate (K₂Cr₂O₇) solution was used to standardize the ferrous ammonium sulfate (FAS) titrant. Mercuric sulfate was added to minimize chloride interference, if any.

The method used was CQS-EAS/CLAS-QOD-0053.

Calculations

The COD concentration is calculated by subtracting the mLs of standardized FAS needed to titrate the test substance from the mLs required to titrate the blank, multiplying by the normality of the FAS, and then multipling by the milliequivalent weight of oxygen. This value is then divided by the grams of test substance used in the analysis. The result is a value in units of grams of COD per grams of test substance.

All calculations are performed manually using a calculator.

Protocol And Standard Operating Procedure Deviations

The Chemical Oxygen Demand (COD) result, which is also used in the calculation of the BOD₅ /COD ratio, was performed in duplicate instead of triplicate. One sample setup used a sample weight that was too large. This had no adverse affect on the BOD₅ /COD ratio or the COD result.

Data Storage And Record Retention

All original protocols, raw data, and reports will be stored for at least ten years by the Chemicals Quality Services Division, Building 320 of the Eastman Kodak Company, Kodak Park, Rochester, New York 14652-6276.

RESULTS

The results of the COD analysis are as follows:

Replicate 1 = 2.48 grams COD/ gram of test substance Replicate 2 = 2.60 grams COD/ gram of test substance

mean = 2.54 grams COD / gram of test substance

CALCULATIONS

CALCULATION

grams COD / gram of test substance = $\frac{(B-S)(N)(0.008)}{sample weight (grams)}$

Where: B = mean volume of FAS used to titrate reagent blank (mL)

S = volume of FAS used to titrate sample (mL)

N = normality of FAS (meq/mL) = 0.239 meq/mL

0.008 = milliequivalent weight of oxygen

sample weight (grams) = grams of test substance used for analysis

e.g. grams COD / gram of test substance for Replicate 1

grams COD / gram of test substance =
$$\frac{(41.3mL - 5.9mL)(0.239meq / mL)(0.008)}{0.0273 grams}$$

= 2.48 grams COD / gram of test substance

BOD5/COD Ratio =
$$\frac{Average\ BOD5\ day\ concentration}{Average\ COD\ concentration} = \frac{0.070\ grams/\ gram}{2.54\ grams/\ gram} = 0.028$$

COD-00775

DISCUSSION

The results of the COD analysis for the test substance were 2.48 and 2.60 grams COD / gram test substance. The average result was 2.54 grams COD / gram test substance.

CONCLUSION

The chemical oxygen demand (COD) of the test substance was measured in compliance with "OECD Principles of Good Laboratory Practice, [C(81) 30(Final)], Annex 2. The method of measurement is identical to Method C.6., "Degradation, Chemical Oxygen Demand", Official Journal of the European Communities, No. L383A / 227,29 December 1992. The mean of two measurements was found to be 2.54 grams of COD per gram of the test substance. The BOD₅ /COD ratio was found to be 0.028.

REFERENCES

- 1. "Chemical Oxygen Demand", Method 410, U.S. Environmental Protection Agency, EPA-600/4-79-020, March 1979.
- 2. "Degradation, Chemical Oxygen Demand", Method C.6., Official Journal of the European Communities, No. L 383 A / 227,29 December 1992.

COD-00775

FIGURE I

COD WORKSHEET

Attachment I: COD Worksheet

HAEL # 97-0216 - 6RID No 6-97 crucle MCHM						
Date Set-up _ 8-7-9	7	Date Titrated 8-8-97				
Analyst Tammy Kleiber						
Replicate Analyses						
Sample Size K2Cr2O7; mL	20.0	20.0	20.0			
Ave. FAS Blank, mL	41.3	41.,3	41.3			
FAS Sample, mL	5,9	SampleSize	8,1			
Net FAS, mi.	35.4	too Large	33.2			
g COD/ g	2.479		2.602			
	Average COD	2,54	-			
	•					
		ation of FAS				
K2Cr2O7, mL	0.0 No.	mality 0.500				
PAS titrated, mL	41.80	4,85	41,80			
Normality of FAS	0.239	0,239	0.239			
Comments: Average Normality of FAS 0, 239						
Blank Titrations © 4/3						
@ 44.3						
3 41.3						
Average Blank Titration 41.3						
Analyst(s) Tam:	my Kleiber		Date 8-9-97			
	$\boldsymbol{\omega}$					